Search results for "Breaking wave"
showing 10 items of 23 documents
Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers
2008
International audience; We study the evolution of a pulse propagating in a normally dispersive fiber in the presence of Kerr nonlinearity. We review the temporal and spectral impact of optical wave-breaking in the development of a continuum. The impact of linear losses or gain is also investigated.
On the global dissipative and multipeakon dissipative behavior of the two-component Camassa-Holm system
2014
Published version of an article in the journal: Abstract and Applied Analysis. Also available from the publisher at: http://dx.doi.org/10.1155/2014/348695 Open Access The global dissipative and multipeakon dissipative behavior of the two-component Camassa-Holm shallow water system after wave breaking was studied in this paper. The underlying approach is based on a skillfully defined characteristic and a set of newly introduced variables which transform the original system into a Lagrangian semilinear system. It is the transformation, together with the associated properties, that allows for the continuity of the solution beyond collision time to be established, leading to a uniquely global d…
Reappraising the appropriate calculation of a common meteorological quantity: Potential Temperature
2020
Abstract. The potential temperature is a widely used quantity in atmospheric science since it is conserved for dry air's adiabatic changes of state. Its definition involves the specific heat capacity of dry air, which is traditionally assumed as constant. However, the literature provides different values of this allegedly constant parameter, which are reviewed and discussed in this study. Furthermore, we derive the potential temperature for a temperature-dependent parameterisation of the specific heat capacity of dry air, thus providing a new reference potential temperature with a more rigorous basis. This new reference shows different values and vertical gradients, in particular in the str…
Observed versus simulated mountain waves over Scandinavia – improvement of vertical winds, energy and momentum fluxes by enhanced model resolut…
2017
Abstract. Two mountain wave events, which occurred over northern Scandinavia in December 2013 are analysed by means of airborne observations and global and mesoscale numerical simulations with horizontal mesh sizes of 16, 7.2, 2.4 and 0.8 km. During both events westerly cross-mountain flow induced upward-propagating mountain waves with different wave characteristics due to differing atmospheric background conditions. While wave breaking occurred at altitudes between 25 and 30 km during the first event due to weak stratospheric winds, waves propagated to altitudes above 30 km and interfacial waves formed in the troposphere at a stratospheric intrusion layer during the second event. Global an…
Interaction of a tropical cyclone with a high-amplitude, midlatitude wave pattern: Waviness analysis, trough deformation and track bifurcation
2013
An idealized scenario of extratropical transition (ET) is investigated, in which a tropical cyclone interacts with a high-amplitude, upper-level wave pattern and well-developed surface cyclones. Early during the interaction, the external forcing of the upper-level wave by the ET system is quantified based on a metric for the waviness of the midlatitude flow. Local amplification of the wave pattern is diagnosed, associated prominently with the trough downstream of ET. This amplified trough, however, exhibits pronounced anticyclonic breaking and thus, in contrast to many previous ET studies, it is not clear that the amplification of the upper-level wave propagates into the farther downstream …
Swash oscillation with a highly nonlinear Boussinesq model for breaking waves
2008
Run-up over variable slope bottom. Validation for a weakly nonlinear Boussinesq-type of model.
2011
Global conservative and multipeakon conservative solutions for the modified camassa-holm system with coupling effects
2014
Published version of an article in the journal: Mathematical Problems in Engineering. Also available from the publisher at: http://dx.doi.org/10.1155/2014/606249 This paper investigates the continuation of solutions to the modified coupled two-component Camassa-Holm system after wave breaking. The underlying problem is rather challenging due to the mutual coupling effect between two components in the system. By introducing a novel transformation that makes use of a skillfully defined characteristic and a set of newly defined variables, the original system is converted into a Lagrangian equivalent system, from which the global conservative solution is obtained, which further allows for the e…
A shoreline boundary condition for a highly nonlinear Boussinesq model for breaking waves
2012
Abstract A physically based strategy was used to model swash zone hydrodynamics forced by breaking waves within a Boussinesq type of model. The position and the velocity of the shoreline were determined continuously in space by solving the physically-based equations of the shoreline motion; moreover, a fixed grid method, with a wet–dry interface, was adopted for integrating the Boussinesq model. The numerical stability of the model was improved by means of an extrapolation method. To validate the proposed methodology, the classical analytical solution for the shoreline motion of a monochromatic wave train over a plane beach was considered. The comparison between the analytical and numerical…
Supercontinuum generation in silicon waveguides based on optical wave-breaking
2014
We theoretically find the third order dispersion that optimizes the spectral broadening induced by optical wave-breaking. It produces supercontinuum spectra spanning beyond 2=3 of an octave in a silicon waveguide pumping at 1550 nm.